Research Progress on Thermochemical Leakage Toxins, Prediction and Early Warning and Protection Technologies for Lithium Batteries Used in Naval Platforms

SUN Jie, ZHOU Tian, LI Jigang, WEI Shouping, WANG Yuguang, TANG Na, DANG Shengnan, CHEN Jing, ZHANG Fan, XIAO Yunhai

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 41-49.

PDF(626 KB)
PDF(626 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 41-49. DOI: 10.7643/ issn.1672-9242.2025.09.005
Special Topic—Reliability of Ship Equipment

Research Progress on Thermochemical Leakage Toxins, Prediction and Early Warning and Protection Technologies for Lithium Batteries Used in Naval Platforms

  • SUN Jie*, ZHOU Tian, LI Jigang, WEI Shouping, WANG Yuguang, TANG Na, DANG Shengnan, CHEN Jing, ZHANG Fan, XIAO Yunhai
Author information +
History +

Abstract

The work aims to review the practical context of the rapid adoption of lithium batteries in fields such as naval equipment, mobile power sources, and emergency power systems. The risk characteristics of thermal runaway under extreme conditions are summarized, such as high temperature, collision, and penetration, which can release toxic gases including carbon monoxide and hydrogen fluoride. The serious threats posed by lithium battery thermochemical leakage to personnel safety and mission execution are elaborated from two aspects, including the toxic effects in confined spaces and the increased probability of mission interruption. Finally, specific recommendations are proposed, including promoting the development of relevant standards, standardizing disaster quantitative classification, advancing the research and development of graded early warning and anti-toxicity systems, and mitigating the risk of personnel exposure to toxic fumes.KEY WORDS: battery thermal-chemistry; leakage; thermal runaway; toxic fumes; naval equipment; protection

Key words

battery thermal-chemistry / leakage / thermal runaway / toxic fumes / naval equipment / protection

Cite this article

Download Citations
SUN Jie, ZHOU Tian, LI Jigang, WEI Shouping, WANG Yuguang, TANG Na, DANG Shengnan, CHEN Jing, ZHANG Fan, XIAO Yunhai. Research Progress on Thermochemical Leakage Toxins, Prediction and Early Warning and Protection Technologies for Lithium Batteries Used in Naval Platforms[J]. Equipment Environmental Engineering. 2025, 22(9): 41-49 https://doi.org/10.7643/ issn.1672-9242.2025.09.005

References

[1] 李泓. 锂电池基础科学[M]. 北京: 化学工业出版社, 2021.
LI H.Fundamental Sciences of Lithium Battery[M]. Beijing: Chemical Industry Press, 2021.
[2] SUN J, LI J G, ZHOU T, et al.Toxicity, a Serious Concern of Thermal Runaway from Commercial Li-Ion Battery[J]. Nano Energy, 2016, 27: 313-319.
[3] 孙杰, 张帆, 周添, 等. 动力电池热化学毒害浅析与新能源安全立法的几点建议[J]. 电池工业, 2025, 29(2): 143-150.
SUN J, ZHANG F, ZHOU T, et al.A Brief Analysis of the Power Batteries Thermal Chemical Toxicity and Several Suggestions for New Energy Safety Legislation[J]. Chinese Battery Industry, 2025, 29(2): 143-150.
[4] 卫寿平, 孙杰, 李吉刚, 等. 锂离子电池热失控气体产物检测及分析技术研究进展[J]. 储能科学与技术, 2024, 13(11): 4155-4176.
WEI S P, SUN J, LI J G, et al.Research Progress on Detection and Analysis of Thermal Runaway Gas Products from Lithium-Ion Batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 4155-4176.
[5] 袁帅, 崔煜杰, 程东浩, 等. 2017~2024年全球电化学储能电站火灾爆炸事故统计分析[J]. 储能科学与技术, 2025(6): 221-235.
YUAN S, CUI Y J, CHENG D H, et al. Statistical Analysis of Global Fire and Explosion Accidents in Electrochemical Energy Storage Systems from2017 to 2024[J]. Energy Storage Science and Technology, 2025(6): 221-235.
[6] 胡晓艳. 高镍/硅碳锂离子电池高温条件下的产气研究[J]. 电池工业, 2024, 28(5): 230-237.
U X Y.Investigations of Gas for Ni-Rich/Si-C Lithium Ion Batteries under High Temperature Condition[J]. Chinese Battery Industry, 2024, 28(5): 230-237.
[7] 高坡, 杨雷, 任卫. 三元镍钴锰酸锂的制备、电化学反应和研究进展[J]. 广东化工, 2024, 51(21): 85-87.
GAO P, YANG L, REN W.Preparation, Electrochemical Reaction and Research Progress of Ternary Nickel-Cobalt-Manganate Lithium[J]. Guangdong Chemical Industry, 2024, 51(21): 85-87.
[8] 马彪, 李海强, 白广利, 等. 磷酸铁锂电池热失控产气可燃极限研究[J]. 电源技术, 2024, 48(7): 1267-1272.
MA B, LI H Q, BAI G L, et al.Study on Flammability Limit of Thermal Runaway Gas of LiFePO4 Battery[J]. Chinese Journal of Power Sources, 2024, 48(7): 1267-1272.
[9] 平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥: 中国科学技术大学, 2014.
PING P.Thermal Runaway and Fire Risk Analysis of Lithium Ion Battery and Research on High Safety Battery System[D]. Hefei: University of Science and Technology of China, 2014.
[10] 余抒阳, 罗文雷, 解晶莹, 等. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
YU S Y, LUO W L, XIE J Y, et al.Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries[J]. Progress in Chemistry, 2023, 35(4): 620-642.
[11] 何莹, 单宝龙. 动力电池系统结构设计及成组技术优化[J]. 汽车实用技术, 2024, 49(23): 32-36.
HE Y, SHAN B L.Structural Design of Power Battery System and Optimization of Group Technology[J]. Automobile Applied Technology, 2024, 49(23): 32-36.
[12] 吴超, 王罗亚, 袁子杰, 等. 液冷散热技术在电化学储能系统中的研究进展[J]. 储能科学与技术, 2024, 13(10): 3596-3612.
WU C, WANG L Y, YUAN Z J, et al.Research Progress in Liquid Cooling and Heat Dissipation Technologies for Electrochemical Energy Storage Systems[J]. Energy Storage Science and Technology, 2024, 13(10): 3596-3612.
[13] 李泓, 陈立泉. 固态电池关键材料体系发展研究[J]. 中国工程科学, 2024, 26(3): 19-33.
LI H, CHEN L Q.Development of Key Material System for Solid-State Batteries[J]. Strategic Study of CAE, 2024, 26(3): 19-33.
[14] ZHOU T, SUN J, LI J G, et al.Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway[J]. Batteries, 2023, 9(6): 308.
[15] NOZU R, NAKAMURA M, BANNO K, et al.Studying a Phenomenon during Overcharge of a Lithium-Ion Battery with Methacrylate Additives for the Gel Electrolyte[J]. Journal of the Electrochemical Society, 2006, 153(6): A1031.
[16] YANG H, SHEN X D.Dynamic TGA-FTIR Studies on the Thermal Stability of Lithium/Graphite with Electrolyte in Lithium-Ion Cell[J]. Journal of Power Sources, 2007, 167(2): 515-519.
[17] WANG Q S, PING P, ZHAO X J, et al.Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery[J]. Journal of Power Sources, 2012, 208: 210-224.
[18] COMAN P T, WENG A, OSTANEK J, et al.Modeling of Li-Ion Battery Thermal Runaway: Insights into Modeling and Prediction[J]. The Electrochemical Society Interface, 2024, 33(3): 63-68.
[19] GOLUBKOV A W, SCHEIKL S, PLANTEU R, et al.Thermal Runaway of Commercial 18650 Li-Ion Batteries with LFP and NCA Cathodes-Impact of State of Charge and Overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186.
[20] VIJAY S, KEVIN M.Thermal Safety Management of Lithium-Ion Battery Energy Storage Systems for Use in Ocean-Going and Subsea Applications[C]// Oceans 2015-MTS/IEEE. New York: IEEE, 2015.
[21] TANAKA N, BESSLER W G.Numerical Investigation of Kinetic Mechanism for Runaway Thermo-Electrochemistry in Lithium-Ion Cells[J]. Solid State Ionics, 2014, 262: 70-73.
[22] LIU H Q, WEI Z B, HE W D, et al.Thermal Issues about Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review[J]. Energy Conversion and Management, 2017, 150: 304-330.
[23] WANG Q S, MAO B B, STOLIAROV S I, et al.A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
[24] DUAN J, TANG X, DAI H F, et al.Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review[J]. Electrochemical Energy Reviews, 2020, 3(1): 1-42.
[25] PING P, PENG R Q, KONG D P, et al.Investigation on Thermal Management Performance of PCM-Fin Structure for Li-Ion Battery Module in High-Temperature Environment[J]. Energy Conversion and Management, 2018, 176: 131-146.
[26] LARSSON F, ANDERSSON P, BLOMQVIST P, et al.Toxic Fluoride Gas Emissions from Lithium-Ion Battery Fires[J]. Scientific Reports, 2017, 7: 10018.
[27] DÜHNEN S, BETZ J, KOLEK M, et al. Toward Green Battery Cells: Perspective on Materials and Technologies[J]. Small Methods, 2020, 4(7): 2000039.
[28] FERNANDES Y, BRY A, DE PERSIS S.Identification and Quantification of Gases Emitted during Abuse Tests by Overcharge of a Commercial Li-Ion Battery[J]. Journal of Power Sources, 2018, 389: 106-119.
[29] LI H, DUAN Q L, ZHAO C P, et al.Experimental Investigation on the Thermal Runaway and Its Propagation in the Large Format Battery Module with Li(Ni1/3Co1/3Mn1/3)O2 as Cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254.
[30] REN D S, FENG X N, LU L G, et al.Overcharge Behaviors and Failure Mechanism of Lithium-Ion Batteries under Different Test Conditions[J]. Applied Energy, 2019, 250: 323-332.
[31] HE J S, YANG X Q, ZHANG G Q.A Phase Change Material with Enhanced Thermal Conductivity and Secondary Heat Dissipation Capability by Introducing a Binary Thermal Conductive Skeleton for Battery Thermal Management[J]. Applied Thermal Engineering, 2019, 148: 984-991.
[32] LARSSON F, BERTILSSON S, FURLANI M, et al.Gas Explosions and Thermal Runaways during External Heating Abuse of Commercial Lithium-Ion Graphite-LiCoO2 Cells at Different Levels of Ageing[J]. Journal of Power Sources, 2018, 373: 220-231.
[33] LIAO Z H, ZHANG S, LI K, et al.A Survey of Methods for Monitoring and Detecting Thermal Runaway of Lithium-Ion Batteries[J]. Journal of Power Sources, 2019, 436: 226879.
[34] OUYANG D X, CHEN M Y, HUANG Q, et al.A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures[J]. Applied Sciences, 2019, 9(12): 2483.
[35] LI X Y, WANG Z P.A Novel Fault Diagnosis Method for Lithium-Ion Battery Packs of Electric Vehicles[J]. Measurement, 2018, 116: 402-411.
[36] SAID A O, LEE C, STOLIAROV S I, et al.Comprehensive Analysis of Dynamics and Hazards Associated with Cascading Failure in 18650 Lithium Ion Cell Arrays[J]. Applied Energy, 2019, 248: 415-428.
[37] DAN D, YAO C N, ZHANG Y J, et al.Dynamic Thermal Behavior of Micro Heat Pipe Array-Air Cooling Battery Thermal Management System Based on Thermal Network Model[J]. Applied Thermal Engineering, 2019, 162: 114183.
[38] BAIRD A R, ARCHIBALD E J, MARR K C, et al.Explosion Hazards from Lithium-Ion Battery Vent Gas[J]. Journal of Power Sources, 2020, 446: 227257.
[39] THAKUR A K, PRABAKARAN R, ELKADEEM M R, et al.A State of Art Review and Future Viewpoint on Advance Cooling Techniques for Lithium-Ion Battery System of Electric Vehicles[J]. Journal of Energy Storage, 2020, 32: 101771.
[40] DIAZ F, WANG Y, WEYHE R, et al.Gas Generation Measurement and Evaluation during Mechanical Processing and Thermal Treatment of Spent Li-Ion Batteries[J]. Waste Management, 2019, 84: 102-111.
[41] OUYANG D X, LIU J H, CHEN M Y, et al.An Experimental Study on the Thermal Failure Propagation in Lithium-Ion Battery Pack[J]. Journal of the Electrochemical Society, 2018, 165(10): A2184-A2193.
[42] ZHOU T, SUN J, LI J G, et al.Study on the Preventive Effect of Au/CeO2 on Lithium-Ion Battery Thermal Runaway Caused by Overcharging[J]. Batteries, 2024, 10(7): 235.
[43] 中国化学与物理电源行业协会. 动力电池致灾危害量化评级计算: T/CIAPS0017[S]. 北京: 中国化学与物理电源行业协会, 2022.
China Industrial Association of Power Sources (CIAPS). Traction Battery Caused Hazard Quantitative Rating: T/CIAPS0017[S]. Beijing: China Industrial Association of Power Sources, 2022.
[44] Naval Air Systems Command. Batteries, Lithium, Rechargeable, Aircraft, General Specification for: MIL-PRF- 29595B[S]. Washington: Naval Air Systems Command, 2021.
[45] Naval Air Systems Command. Batteries, Rechargeable, Sealed, General Specification for: MIL-PRF-32383A[S]. Washington: Naval Air Systems Command, 2021.
[46] TRAN M K, MEVAWALLA A, AZIZ A, et al.A Review of Lithium-Ion Battery Thermal Runaway Modeling and Diagnosis Approaches[J]. Processes, 2022, 10(6): 1192.
[47] HONG J C, WANG Z P, QU C H, et al.Fault Prognosis and Isolation of Lithium-Ion Batteries in Electric Vehicles Considering Real-Scenario Thermal Runaway Risks[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 88-99.
[48] HONG J C, WANG Z P, MA F, et al.Thermal Runaway Prognosis of Battery Systems Using the Modified Multiscale Entropy in Real-World Electric Vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2269-2278.
[49] KLINK J, GRABOW J, ORAZOV N, et al.Thermal Fault Detection by Changes in Electrical Behaviour in Lithium-Ion Cells[J]. Journal of Power Sources, 2021, 490: 229572.
[50] HONG J C, WANG Z P, YAO Y T.Fault Prognosis of Battery System Based on Accurate Voltage Abnormity Prognosis Using Long Short-Term Memory Neural Networks[J]. Applied Energy, 2019, 251: 113381.
[51] LI D, LIU P, ZHANG Z S, et al.Battery Thermal Runaway Fault Prognosis in Electric Vehicles Based on Abnormal Heat Generation and Deep Learning Algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525.
[52] LI D, ZHANG Z S, LIU P, et al.Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 1303-1315.
[53] LI D, ZHANG Z S, WANG Z P, et al.Timely Thermal Runaway Prognosis for Battery Systems in Real-World Electric Vehicles Based on Temperature Abnormality[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 120-130.
[54] LI X J, LI J W, ABDOLLAHI A, et al.Data-Driven Thermal Anomaly Detection for Batteries Using Unsupervised Shape Clustering[C]// 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE). Kyoto, Japan. IEEE, 2021: 1-6.
[55] KLINK J, HEBENBROCK A, GRABOW J, et al.Comparison of Model-Based and Sensor-Based Detection of Thermal Runaway in Li-Ion Battery Modules for Automotive Application[J]. Batteries, 2022, 8(4): 34.
[56] SHAH K, JAIN A.Prediction of Thermal Runaway and Thermal Management Requirements in Cylindrical Li-Ion Cells in Realistic Scenarios[J]. International Journal of Energy Research, 2019, 43(5): 1827-1838.
[57] SHAH K, CHALISE D, JAIN A.Experimental and Theoretical Analysis of a Method to Predict Thermal Runaway in Li-Ion Cells[J]. Journal of Power Sources, 2016, 330: 167-174.
[58] DONG P, LIU Z X, WU P, et al.Reliable and Early Warning of Lithium-Ion Battery Thermal Runaway Based on Electrochemical Impedance Spectrum[J]. Journal of the Electrochemical Society, 2021, 168(9): 090529.
[59] LI D, ZHANG Z S, LIU P, et al.DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles[J]. Energies, 2019, 12(15): 2977.
[60] JIANG J C, CONG X W, LI S W, et al.A Hybrid Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles[J]. IEEE Access, 2021, 9: 19175-19186.
[61] JIANG L L, DENG Z W, TANG X L, et al.Data-Driven Fault Diagnosis and Thermal Runaway Warning for Battery Packs Using Real-World Vehicle Data[J]. Energy, 2021, 234: 121266.

Funding

; Fund:National Natural Science Foundation of China (51551204); National Key Research and Development Program of China (2018YFB0104404); Integrated Equipment Research Program〔2023〕No.1764 (145BZB210013420X)
PDF(626 KB)

Accesses

Citation

Detail

Sections
Recommended

/